

Radar Signatures of Small Consumer Drones

Chenchen J. Li and Hao Ling

The University of Texas at Austin

Motivation and Objective

- The proliferation of small consumer drones has raised much recent interest in their regulation and monitoring.
- One potential way to detect and identify these drones is using a ground-based radar.
- **Objective:** To investigate the radar signatures of these small drones.

DJI Phantom

3DR Solo

DJI Inspire

Approach

- Carry out laboratory measurement of small consumer drones.
- Examine their radar signatures in the form of inverse synthetic aperture radar (ISAR) images.
- ISAR imaging provides not only radar cross section (RCS), but also maps the dominant scattering in 2-D.

Scientific Questions:

- 1. Will the small size and low reflectivity of the drone body result in a very low RCS?
- 2. Will the spinning propeller blades result in significant Doppler artifacts [1]?

[1] P. Pouliguen *et al., IEEE Trans. Antennas Propagat.*, 2002.

Laboratory Measurement Setup

- Vector network analyzer (VNA) S₁₁ measurement.
- Drone mounted and rotated on a turntable.
- Start with baseline scenario and then deviate.
- Calibrated results in terms of absolute RCS using a calibration sphere.
- Horn mismatch and room clutter are reduced by subtracting the moving average.
- 3 GHz of bandwidth.
 - 5 cm of down-range resolution.

ISAR Image Formation

• 2-D image generated using 2-D inverse Fourier transform of frequency/angle data.

$$Image(r,cr) = \frac{1}{K_x K_y} \iint E^s(f,\phi) e^{jk_x r} e^{jk_y cr} dk_x dk_y$$
$$where \begin{cases} k_x = \frac{4\pi f}{c} \cos \phi \\ k_y = \frac{4\pi f}{c} \sin \phi \end{cases}$$

- Angular swath chosen for equal down-range / cross-range resolution of 5 cm.
- Slide swath along angle to generate an ISAR movie.

Baseline Scenario

- DJI Phantom 2 (35 cm diagonal).
- Azimuth scan at zero-elevation angle: results in a top-view of the drone.
- 12-15 GHz, blades stationary, VV-pol, no camera.

ISAR movie available at: http://users.ece.utexas.edu/~ling/DroneISARMovie.gif

ISAR Snapshots

- ISAR image snapshots at different look angles with an <u>outline</u> of drone overlaid.
- Maximum RCS in each snapshot is listed.

• No significant differences between blades rotating and stationary.

• On average, RCS at 3-6 GHz about ~12 dB lower than 12-15 GHz.

• HH-Pol: weaker battery return, stronger motor return.

• Camera can only be seen at specific look angles.

- Elevation scan instead of azimuth scan.
- Captures the shape of the drone in another imaging plane.
- Instead of top-view of the drone, captured the side-view.
- In practice, collected by flipping drone on its side and rotating.

Azimuth Scan

OF TEXAS AT AUSTIN

Elevation Scan

Larger Drones: 3DR Solo

- Drone shape and size captured.
- Maximum RCS smaller than Phantom 2 due to body shape.
- Similar trends as Phantom 2.

Larger Drones: DJI Inspire 1

- Drone shape and size captured.
- Additional feature from the horizontal frame.
- Highest maximum RCS of the three drones.
- Similar trends as Phantom 2 and 3DR Solo.

WHAT STARTS HERE CHANGES THE WORLD THE UNIVERSITY OF TEXAS AT AUSTIN

Recap

- Overall RCS level is low, but the drone size and shape can be captured in the ISAR imagery.
- Non-plastic portions dominate their radar signatures (such as motors, battery pack, and carbon-fiber frame).
- Drone propellers did not contribute a significant return relative to the drone body (static or spinning).
- Data collection was under idealized conditions, but it should be feasible to collect such data from an actual drone in flight.
- **Next:** Carry out in-flight measurement of the small drone.
- Scientific Question: Can focused ISAR images be generated from these small drones in flight?

In-Situ Measurement Using a UWB Radar

- PulsON 440 (P440) ultra-wideband (UWB) radar by Time Domain Corporation.
- Emits short pulses at a pulse repetition frequency of 10 MHz.
- Equivalent frequency bandwidth from 3.1 to 5.3 GHz centered at 4.3 GHz.

In-Flight Measurement Setup

- Measurement setup on the ground includes P440 radar, circulator, and single horn antenna.
- Phantom 3 Adv. is used since it has extractable GPS flight data.
- Collect range profiles (at 100 Hz) as the drone flies by in a straight line.

Motion Compensation

- Motion compensation is necessary to remove translational motion and retain only the rotational motion.
- Images generated through blind motion compensation (alignment of the RCS centroid).
- Baseline images also generated with aid from "ground truth," GPS flight data.
- Angle estimate based on $\phi = \cos^{-1}(R/R_{min})$. Images formed using same *k*-space imaging as before.

Phantom 3 Adv. Results

- Images obtained from blind motion compensation are on-par with images obtained from GPS-assisted motion compensation.
- Images are focused but narrower bandwidth of radar and limited number of scatterers on the drone make it challenging to discern the shape.

Larger Drone: DJI Inspire 1

ISAR movie available at: http://users.ece.utexas.edu/~ling/DroneISARMovie_Inspire.gif

Compared to Laboratory Measurement

Images after blind motion compensation are comparable to those obtained in laboratory measurement.

Compared to Phantom 3

Size difference, from Phantom 3, is observed.

Conclusion

- ISAR images can capture the drone shape and size despite its small size and low reflectivity.
- Spinning propellers do not contribute significant Doppler clutter.
- Focused images can be generated from in-flight measurement.
- Radar is a potential candidate for tracking and classification of small consumer drones.

Acknowledgment

Colton Bostick of UAV Direct and Lenny Tropiano of FlyTheSkyDrone Productions for providing drones for measurement.

Alan Petroff of Time Domain Corporation for technical support on the ultra-wideband radar.

This work was supported in part by the National Science Foundation under Grant ECCS-1232152.

