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Abstract— There currently exists a high demand for vehicles
with ever increasing levels of autonomy. While some of these
vehicles may depend on GPS for localization, other vehicles will
require a more precise localization solution in order to perform
their tasks. In addition, some vehicles may need to work in GPS
denied environments. These issues could be addressed with the use
of an Ultra-Wide Band (UWB) ranging sensor fused with an
Inertial-Measurement-Unit (IMU) using an Extended Kalman
Filter (EKF). The main goal of this work is to investigate and
compare two different sensor data fusion techniques to
incorporate a 3-axis 9-DOF IMU in a tightly coupled fashion to a
3-D positioning solution that is derived from UWB signals. The
techniques differ from each other in that the first fusion of the
IMU data occurs in the prediction step and the second fusion
occurs in the update step. Experimental results obtained with a
quadcopter show that the data fusion performed in the update step
outperforms the fusion performed in the prediction step. The
results also show that when using very accurate UWB ranging
sensors, the use of IMU data does not improve significantly the
accuracy of the position. However, the integration of IMU data in
the update step increases the robustness of the EKF against
erroneous modelling of the process noise.

Keywords— Kalman filter; sensor fusion; localization; IMU;
UWB.

1. INTRODUCTION

It is becoming increasingly clear that to realize the full
potential of unmanned vehicles, higher levels of autonomy than
is currently available will be required. This is due to several
factors, but is a direct result of the incredible diversity and
usefulness of their possible functions. However, removing the
human pilot from the control loop also removes the human’s
sensing and localization abilities as well. These functions will
need to be replaced by electrical and mechanical sensors whose
output data is processed to provide a localization solution with
the level of precision required of the control task. For typical
airplane applications, GPS may be able to provide this level of
localization precision. However, for small or medium sized
UAVs, which operate in areas which are much smaller than a
traditional airplane could operate, GPS may not be able to
provide a precise enough solution. One particularly interesting
example scenario involves the use of UAVs indoors where the
size of the work area is very small, compared to normal airplane
operations, and GPS signals are not available. Another very
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relevant example is that of a small UAV flying in close
proximity to buildings, people, or other UAVs. In addition, other
autonomous vehicles will almost certainly require a more
precise localization solution as well. For example, the relative
distances between cars on a roadway or between the road and
obstacles or dangerous areas is too small to allow a GPS only
positioning solution. These examples, and others, provide the
motivation for the work presented in this paper. In order to fully
appreciate the problem, the indoor environment and a UAV was
chosen for experimentation; however, the results offered here
are applicable to other outdoor scenarios as well.

Several technologies have been suggested to build indoor
positioning systems. In [1] and [2] comprehensive surveys of
different technologies and algorithms are compared. In both
works, relative distance measurements using Ultra-Wide Band
(UWB) raging radar units appear to be the most appealing
technology. UWB signals are particularly suitable for indoor
localization systems due to their high accuracy and ability to
operate in other than strictly Line-of-Sight (LOS) conditions.
For instance, in [3] a 2-D UWB positioning system that has an
accuracy of less than 4 cm is described. When compared to a
nominal GPS accuracy of 3 m the UWB provides superior
results. Better accuracies could be achieved with optical
positioning systems that are based on the use of Infrared (IR)
cameras. In that case, the drawback is that LOS to the tracking
reflectors is required. Unlike infrared signals, UWB signals can
easily penetrate different kinds of material thanks to the large
bandwidth [2]. Furthermore, the large bandwidth also allows
precise distance measurement even in presence of multipath [4].
Other advantages are the low power used in the UWB
transmissions and the robustness against radio interference [1].

One of the available UWB commercial systems is the
PulsoOn 440 manufactured by Time Domain. This device can
estimate distances by using the so called “Two-Ways-Time-of-
Fly” (TWToF), which allows distance estimation between two
nodes without requiring synchronization between them [5]. A
node A estimates the distance from node B as follows:

a) Node A sends a request to node B;
b) Node B receives the request from node A;
¢) Node B sends the answer to node A;

d) Node A receives the answer.



Denoting the elapsed time between the steps a and d with T
and the one elapsed between the steps b and ¢ with Tgelay, the
distance between the two nodes is:

c
d= 3 (Tio"Tdelay)»  c=speed of light (1)

As explained in [1] and [2], in general different technologies
require different algorithms, and even two different uses of the
same technology might require different algorithms as well. In
the case of UWB positioning systems, a certain number of fixed
nodes (anchors) are deployed in known locations. To obtain the
3-D position, at least four anchors must be used. If the anchors
and the mobile node are synchronized, the mobile node can be
localized in the space by using simple trilateration techniques
and the least square method [2]. If the anchors and the mobile
node are standalone devices, the trilateration cannot be applied
because the distances are not measured at the same time. This is
the case of the Time Domain modules', which consequentially
require the use of a different algorithm. In this work, the
localization is performed by using the Kalman Filter in its
linearized form, which is referred to as Extended Kalman Filter
(EKF). One of the key points of the EKF is the underlying state
transition model, which in this case is a motion model. The
solution presented in [5] uses a constant velocity (CV) motion
model; however, the drawback of using a CV model is that in
presence of a target having strong accelerations, the EKF could
work as a low pass filter. For that reason, in this work a constant
acceleration (CA) motion model has been utilized. Nevertheless,
with a CA motion model, sometimes the EKF could interpret the
noise as acceleration. To counteract this phenomenon, the EKF
could be improved by integrating an Inertial Measurement Unit
(IMU) that provides the actual accelerations.

The main goal of this research is to evaluate the benefits that
the addition of IMU data can provide in terms of position
accuracy in a UWB localization system. The target application
of this localization system is the localization of an Unmanned
Aerial Vehicle (UAV), such as a drone or a Radio Controlled
(RC) airplane. In this work, a tightly coupled architecture is
considered to integrate the IMU data with the UWB data for the
position estimation. There are two approaches to fuse the
accelerations provided by the IMU. The first one is to fuse the
data in the prediction step of the EKF, which means to utilize the
values provided by the gyroscope and the accelerometer as
essentially a control input. An example of such techniques can
be found in [6], where an EKF is used to estimate the attitude of
an RC airplane. In this case, the gyroscope and accelerometer
data are used as control input in the prediction step, while the
velocity provided by a GPS receiver is used in the update step to
correct the prediction. Moreover, in the system described in [7],
IMU data are fused with UWB data in the prediction step.
However, in this system only the 2-D position is computed and,
different from our system, the UWB module provides
coordinates rather than simple distances. In our implementation
of this first fusion technique, the gyroscope and the
accelerometer data are both utilized as control inputs in the
prediction step, while the correction is performed by using the
distances provided by the UWB module. Furthermore, different
from the work presented in [6], we are only interested in the
estimation of the position.

! These modules can be synchronized to work in a TDMA network, in
which a slot map defines which modules must communicate. But even in that
case one node can measure only one distance at a time.

The second possible approach is known as measurement
fusion method [8], which in its simplest form consists in merging
the multi-sensor data through the observation vector. In our case,
this type of sensor fusion implies that the prediction is totally
based on a mathematical motion model, while the correction is
performed employing both the IMU data and the UWB data.

The paper is organized as follows. The second section
provides a theoretical background about the Extended Kalman
Filter. The details of the specific implementation of the EKF for
the localization problem and for the two sensor data fusion
methods are given in section three. Furthermore, in section three
there is also a brief description of the filtering techniques used
to improve the quality of the localization and it is explained how
the anchors were deployed in the environment. The equipment
that was employed for experimentation is described in section
four and the experimental results are presented in the fifth
section.

II. EXTENDED KALMAN FILTER

The linear Kalman filter is based on the use of a state
evolution model and an observation model

Xier1 =Fi X+ Byw +wy 2)
Zszka+Vk (3)

where xy is the state vector, uy is the input vector, 7 is the
observation vector, F, is the transition matrix, By is the control
input matrix and Hy, is the observation matrix. The terms w,and
vy respectively denote the process noise vector and the sensor
noise vector, and they are both zero-mean white Gaussian
random vectors [9]. The Kalman Filter performs the state
estimation in two steps, which are prediction and update. In the
prediction step the new state and its covariance matrix Py are
predicted by using the previous state, the previous covariance
matrix and the current input. In the update step the predicted
state and the predicted covariance matrix are corrected by using
the current observation vector.

Prediction:
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Update:
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In the equations (6-10), klk-1 means that the value is
predicted by using the knowledge of the previous value, while
klk is used for the corrected values. The matrix Q,is the
covariance matrix of the process noise wy, Ry is the covariance
matrix of the sensor noise vy, §,is the innovation and K is the
Kalman Gain. These equations can be extended to nonlinear



systems in which either the evolution model or the observation
model is nonlinear.

X =F (X151, Wi 1) an

7 =h(Xy, i) (12)
To apply the Kalman Filter in this case, it is required that
f(Xy1,Uk.1,Wi.1) and h(xy,vy) are continuously differentiable in

xi [9]. If the condition is satisfied, (4) and (6) are replaced by
(13) and (14).

Kigk-1 =T R 1k-15> Uk-1) (13)
yk:Zk'h(’Xklk-l) (14)

In this case, F, and H; are the Jacobian matrix of the
functions f(Ry j1,0c;) and h(xy,vy). In the first case, the
Jacobian is computed by using the previous state, while in the
second case the prediction of the new state is used.
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III. LOCALIZATION ALGORITHMS

In this section, the theoretical formulation of the EKF for the
UWB localization system is discussed. Furthermore, the
implementation of the two sensor data fusion techniques that
have been evaluated in this work is illustrated. Finally, it is
explained how the raw data delivered by the IMU and the UWB
ranging sensor are filtered and how the anchors are placed to
improve the quality of the system.

A. UWB data only

Since the EKF is applied to localize a target, in this case the
state transition model is a motion model. In [10] different motion
models are presented and the one used here is the variant of the
CA motion model referred to as “white-noise jerk model”. In
this model, the acceleration is assumed to be affected by a white
noise with power spectral density S,,. Furthermore, in this model
the movements along the three axes are assumed to be
decoupled. The discrete representation of this motion model for
a single coordinate is:
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In the above representation x,%,X are respectively the general
coordinate, speed, and acceleration and t is the time elapsed
between the previous state and the current state. The above

model can be extended to the 3-D case by employing the fact
that the motions along the three axes are decoupled:

X3p,=F3pX3p, , TW3p, 19

T .
X3p =[x Ve y vyay zv, a,] , Fyp=diag[F F F] (20)

Q3D=cov(w3Dk)=diag[Q Q Q] 21

When only UWB modules are used, the only available
information for the update step is the distance between the target
and a reference location. In this case zy, Ry, Sy, Ky are scalars,
the observation function is h(xyy.1): R3*— R, and H, is a vector
of nine elements.

h(xy,2) =y (x-X,) 2+ (y-y,) 2+ (z-x,)? (22)
[ Gx)) -y (x-X,)
= h(xyz)  h(xyz) h(x,y,z)OO (23)

The values x,.,y,,z, are the coordinates of the anchor from
which the distance is measured.

B. UWB data and IMU data fused in the prediction step

When fusing IMU data in the prediction step, both the
transition model and the observation model are nonlinear; thus,
(15) and (16) must be used. In this kind of fusion, the data
coming from the accelerometer and the gyroscope are used as
input in the state transition model. Unlike the previous case, here
the CA motion model is no longer employed; thus, the are no
accelerations in the state. On the other hand, the state must
include information about the attitude of the target to allow the
transformation of the accelerations provided by the IMU from
the body frame to the inertial frame. That can be done essentially
in two ways: quaternions or Euler angles. Here, Euler angles are
used, and in (24) ¢, 6, and v are respectively roll, pitch, and yaw
angles.

T
Xpp =X Vi ¥y vy 2 v,6 0 y] (24)

The state transition function is the following:

Riger =F it W) =A%y +TMpuy, -8 (25)

Where:
A=diag[F F F L], F‘=[(1) N (26)
t2
T=diag[T T' T Im],T’:[E O] 27
0 t

. =[ace, acc, acc, gyro, gyro, gyroz]T (28)
&=o 0 0 0 g go o 0 (29)

The nonlinearity in the transition function is due to the
presence of the matrix Mk, which is the transformation matrix
that is used to transform the input vector from the body frame to



the inertial frame. The elements of M are functions of the
angles ¢, 0, and y. The product Msu,, is a vector having nine
elements as the state vector x;.

In this case, the covariance matrix of the process noise has
the same structure as of the CV motion model. In (30) and (31),
Qgp,is the portion of the covariance matrix associated with a
single translational movement; while, QFP,iS the portion
associated with the three rotations. The subscript FP stands for
“Fusion in the Prediction step”.

. 30
QFP:COV(WFPk):dlag [QFPl Qpp, Qpp, QFP,] G0
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Since the fusion is performed in the prediction step, the
observation model is the same as the case in which only UWB
data are used, thus (22) and (23) are used.

C. UWB data and IMU data fused in the update step

For the fusion performed through the observation vector, the
prediction step is the same as the case in which only UWB data
are used; therefore, the transition model is linear. However, in
this case the state has fifteen elements because it must include
both the Euler angles and the turn rates. As a result, in the
prediction step the EKF estimates both accelerations and turn
rates.

T
XFUk:[X Vyagyvya,zv,a, dpoqy r] 32)
Xpu =FruXpuy T Wr (33)
Fry=diag[F F F F F F] (34)

Qpy=cov(wpy, )=diag [Q QQ QFPlQFPIQFPt] 4

In the equations (32-35), FU stands for “Fusion in the Update
step”. The transition matrix and the covariance matrix in this
case are built by utilizing the CA model for the translational
motion and the CV model for the rotational motion.

In this case, in the update step there is no longer a single
measure; instead, there is a vector of measures, which contains
the distance obtained with the UWB module and the acceleration
and turn rates obtained with the IMU. Therefore, the observation
function is hgy (X ):RP— R,

]T (36)

zFUkz[dUWB acc, accy acc, gyro, gyroy gyro,
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hgy (XFUk\k-l) = [h(x,y,z) agp Ay 2,0 Pr dp rT] 37
T
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In (37) and (38) the subscript T stands for transformed and
the values with that subscript are the accelerations and turn rates

transformed from the inertial frame to the body frame employing
the matrix M?. Furthermore, since seven values are used in the
correction step, the measurement noise is defined by the
covariance matrix Rgy, .

— 2 2 2 2 2 2 2
Ry, —dlag[(’UWB Oacc Oacc 9acc OGyro OGYRO GGYRO] (39

It is worth to notice that in this second fusion technique, the
computational cost is much higher. In fact, the state has a higher
dimension, and since there is a vector of measures rather than a
single value, Rpy, is a 7x7 matrix, and Hgy is a 7x15 matrix
computed by utilizing the (16).

D. Data prefiltering and placement of the anchors

Low cost IMUs, which are typically found on small UAVs,
are known to be especially noisy. To improve the quality of the
signals coming from the accelerometer and the gyroscope, a six-
point moving average filter is used. While for IMU it was
possible to apply a filtering technique to improve the quality of
the signals, that was not possible for the distances measured with
the UWB modules. That was due to the low update rate of the
distances. However, those modules have a pretty narrow
dynamic range, which in our tests was found to be
approximatively 5 cm in favorable conditions and 10 cm in a
high multipath environment. On the other hand, certain
unpredictable circumstances, such as severe Non-Line-of-Sight
(NLOS) condition, might cause a distance to be completely
erroneous. Unfortunately, a single outlier can cause the EKF to
oscillate for several time steps. To overcome this issue, an
outlier detector based on the average estimated velocity is used.

When setting the system, a very important aspect that must
be considered is the dilution of precision. This phenomenon is
illustrated in [11], where the author explains how the position of
the anchors affects the accuracy of the localization system. In
particular, it is shown that the placement of the anchors in a
plane that is parallel to the ground (i.e. anchors placed at the
same altitude) leads to a low accuracy in the altitude estimation.
For that reason, our first setup consisted of six anchors, placed
in two different planes parallel to the ground. However, since the
first configuration was unsatisfying, a second configuration with
five anchors deployed in three different planes was used.

IV. EQUIPMENT AND SETUP

The data collection was performed in a pool area by using
the quadcopter DJI Phantom 3. To have a reference system to
compare the different approaches, a very accurate (<1 mm [12])
optical tracking system was used. Such a system is called
Optitrack and is manufactured by Natural Point. Optitrack
consists of several Infra-Red (IR) detecting cameras (in this
research 8 Flex-13 cameras were employed) and IR reflecting
objects. The tracked object is equipped with a unique pre-
determined pattern of IR reflecting/emitting points referred to as
“Rigid Body”. In our tests, to have a better tracking quality, the
quadcopter was equipped with four IR LEDs, thus active IR
sources were used.

The IMU data were collected by using two diverse sources.
One was the VMU931 manufactured by Variense. This device
is equipped with a gyroscope, an accelerometer and a



magnetometer. The second source was a Pixhawk autopilot,
which is a system manufactured by 3DRobotics. This platform
has advanced 32-bit ARM Cortex M4 processor for high volume
real time computation, 168 MHz 256 KB RAM with 2MB flash
memory as the main memory, and more importantly, it uses high
precision IMU that consists of the following sensors: ST Micro
L3GD20 3-axis 16-bit gyroscope, ST Micro LSM303D 3-axis
14-bit accelerometer and magnetometer, redundant with
Invensense MPU 6000 3-axis accelerometer and gyroscope. The
choice of using two diverse sources for the IMU data was due to
the need of having redundant information. In fact, the data of the
VMU931 were noisier than the Pixhawk data, on the other hand
the Pixhawk data were affected by a bias error.

The UWB ranging sensor used in this work was the PulsON
440, which is manufactured by Time Domain. This is a UWB
module that can work as a precise ranging radio or radar sensor
in high multipath and highly reflective environments. Its
maximum operating range varies from 300 m to 1100 m,
depending on antenna height and ground surface characteristics.

Finally, the last component was the Raspberry Pi 3 rev. B,
which is a single board computer equipped with a 1.2 GHz 64-
bit quad-core ARMv8 CPU, 1 GB RAM and that can support
several operating systems. In our case the used operating system
was Raspbian, which is based on Debian. Even though, we do
have a real-time version of our localization system that runs on
the Raspberry Pi, in the final test the Raspberry Pi was used just
to collect the raw data from the UWB module and the IMUs. The
data were then post-processed by using the software MATLAB.

V. EXPERIMENTAL RESULTS

This section demonstrates the results that were obtained in
our experiments. Initially, the three different approaches were
tested by using the configuration 1 that is shown in Fig. 2. In this
first configuration, the anchors were placed at two different
altitudes, and there were three different x values and two
different y values. However, the results revealed that for the z
coordinate there was clearly a problem. In fact, in Fig. 3 it is
possible to notice that the z coordinate was affected by a drift
error. Furthermore, Fig. 4, which is a zoomed view of Fig. 3, is
a typical example in which the use of IMU data is useful. In fact,
it is possible to notice that the use of IMU reduces the
oscillations caused by strong accelerations considerably. On the
other hand, Fig. 5 and Fig. 6 show that the accuracy in the
horizontal plane was satisfactory. That was because in the

— .
Fig. 1: data collection session.

horizontal plane, the anchors were placed in a more scattered
manner than the vertical plane.

To improve the quality of the localization, the configuration
of the anchors was changed. The second configuration had five
anchors distributed on three different altitudes, and with three x
values and three y values. In Fig. 7, Fig. 8, and Fig. 9 there are
the coordinate obtained with the configuration 2. In this case, the
improvement of the quality of the localization is completely
noticeable.

The evaluation of the three approaches was performed by
comparing the obtained tracks with the one obtained with the
optical system. Since the Optitrack had an update frequency of
100 Hz, while our UWB localization systems had un update
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frequency that oscillated between 10 Hz and 16 Hz, the
comparison with the Optitrack was performed by sampling the
Optitrack data with a variable sample frequency. Furthermore,
to obtain the Probability Distribution Function (PDF) of the
error, only time intervals in which the Optitrack data were very
accurate were used. To have the most comprehensive
investigation possible, the data collection was performed by
piloting the drone with different speeds, accelerations, and
trajectories. The PDFs of the error for the three approaches are
shown in Fig. 10, Fig. 11, and Fig. 12. The results show that the
position provided by the system that fuses the IMU data in the
update step is just slightly better than the one provided by the
systems that uses only UWB data. In fact, while in the former
the peak of the distribution is between 12 cm and 18 cm, for the
latter the peak is between 15 cm and 21cm. On the other hand,
the fusion of IMU data performed in the prediction step provides
a less accurate position. In this case, the PDF of the error is
spread over a broader range of error values and the peak is
between 18 cm and 27 cm.

One of the most crucial factors in the implementation of a
Kalman Filter is the tuning process, which consists in finding the
optimal values for the covariance matrix of the process noise and
the covariance matrix of the observation noise. For the second
one, that means to find the values for the matrix Rgy, which
usually is a diagonal matrix whose values are the variances of
the sensors. Therefore, if the variances of the sensors are known,

z coordinate vs time

6000 UWB only 1
——FUSION PREDICTION
5000 - FUSION UPDATE 1
----- OPTITRACK
4000 1
€
E,3000 - 1
N
oL T e
2000 H (2%t 4
et :-Q‘,----u:.:-ﬁ-»f#-.a,..--
g e e

220 240 260 280 300 320 340 360 380 400
time [s]
Fig. 7: z coordinate with configuration 2.
X coor'dinate vs time

3000 T T
2000 - 1
o, »“I
i ot W)
1000 Py H H -
§ i { 7 :
0 R i 14
— = L, " H
3 o o H H
< -1000 %‘(\" f 1
N oo
V\"‘ 7 ]
-2000 [
UWB only
-3000 |- [——FUSION PREDICTION 1
FUSION UPDATE
------ OPTITRACK
-4000 - ; ; | ]
250 300 350 400
time [s]

Fig. 8: x coordinate with configuration 2.
y coordinate vs time

4000 -

3000

2000 -

1000

y [mm]

-1000 UWB only
——FUSION PREDICTION
FUSION UPDATE

------ OPTITRACK

-2000

200 250 300 350 400
time [s]
Fig. 9: y coordinate with configuration 2.

this part of the tuning process is straightforward. The hard part
of the tuning process is to find out the values for the Q matrix.
In our case, this task consists in finding the optimal values for
the power spectral densities S,, . Even though there exist
automatic procedures for setting the optimal values, in most
cases it is an iterative manual process. The results presented in
Fig. 10, Fig. 11, and Fig. 12 are obtained by using values of S,,_
that in our tuning process were found to be optimal. To evaluate
the robustness of the three approaches with respect to erroneous
tuning of the filter, different values of S,, were tested. While for
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values that were smaller than the optimal one, the PDFs of the
error did not change considerably, in the case of greater values
there were dramatic changes in the PDF of two of the three
approaches. Fig. 13 and Fig. 14 show respectively the z
coordinate and the PDF of the error for a value of the power
spectral density that is hundred times bigger than the optimal
value. The results show that both the solution based only on
UWRB data and the one that fuses IMU data in the prediction step
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Fig. 14: error probability distribution function with high process noise.

are affected by an error whose PDF is spread over hundreds of
centimeters. Instead, in the case of the fusion performed in the
update step, most of the PDF of the error is still concentrated
below 50 cm. Moreover, the shape of the PDF is close to the case
in which the optimal value was used.

VI. CONCLUSION

In this paper, we have presented a 3-D localization system
that relies on the use of UWB ranging sensors. The localization
is performed by using an EKF in which a “white-noise jerk
model” is employed as the transition model. The advantage of
this motion model is that it improves the localization
performance in scenarios in which random maneuvers are
performed. On the other hand, when employing the “white-noise
jerk model”, the EKF interprets the high process noise as strong
accelerations. To counteract this phenomenon, IMU has been
utilized to measure the actual accelerations. The goal of this
work was to evaluate which sensor data fusion method provides
better results in an architecture in which an IMU and a UWB
ranging sensors are tightly coupled. The final results reveal that
the fusion performed in the update step of the EKF provides
higher accuracy than the fusion performed in the prediction step.
The results also suggest that the integration of IMU data in the
update step provides a very modest improvement of the accuracy
with respect to the sole use of UWB data, while the fusion of
IMU data in the prediction step degrades the accuracy. However,



the results illustrate that the use of IMU data in the update step
increases the robustness of the localization system against
erroneous modelling of the process noise. This last result proves
that the drawback of using a CA motion model can be
counteracted by integrating IMU data in the update step. By
contrast, the fusion of IMU data in the prediction step not only
degrades the accuracy, but it also reduces the robustness against
erroneous modelling of the noise.

This work will be extended to the inclusion of different types
of sensors. Furthermore, different motion models will be tested
and methodology for automated tuning process of the EKF will
be considered.
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