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Abstract— This paper considers the problem of tomographic
area mapping using radio frequency measurements gathered by
a network of mobile nodes. Termed radio tomographic imaging,
the technique has shown potential for object tracking, imaging
static obstacles, and even through-wall imaging. Our approach
addresses substantial issues for the practical implementation of
such a system, namely, the mitigation of multipath signal effects
and the characterization of a large number of uncalibrated
network links. We propose a system that utilizes ultrawideband
direct path signal strength measurements as a means of reducing
the effects of the multipath fading. Furthermore, we address
the estimation of unknown path loss and link bias parameters
online through the framework of a linear mixed effects model.
This permits the estimation of a static area map without a
prohibitive calibration of these parameters prior to deployment,
which is crucial in a network that may contain hundreds of
links. Our model is posed as a convex optimization problem
using the elastic net for regularization. Bayesian performance
bounds are derived and our method shows positive results in
simulation. We then demonstrate the efficacy of our solution
on real tomographic data gathered from our cognitive spectrum
operations testbed.

Index Terms— Calibration, radio tomographic imaging (RTI),
ultra-wideband (UWB), wireless sensor networks.

I. INTRODUCTION

A. Background

THE use of wireless sensor networks has proliferated in
the past decade, creating a wide body of research with

many potential use cases. A network of numerous low-cost
nodes may be static or mobile, collecting and transmitting a
large array of possible data to be processed centrally, or in
a distributed fashion. A key goal, particularly for mobile
networks, is for the entire system to be spatially aware of
its surroundings beyond the traditional localization of node
positions. A networked robotic system may need to learn
the locations of obstacles to be avoided, as in a simulta-
neous localization and mapping (SLAM) algorithm [1], [2].
Environmental monitoring applications may additionally
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require the network to know the presence of people enter-
ing or leaving an area, even tracking their movements [3].
Networks employing radio frequency (RF) communication
may need to estimate channel quality between points in
space, as in [4]. Finally, a mobile network may benefit from
environmental map information in areas which are visually
occluded behind walls or other obstructions. Such through-
wall images could be used by emergency personnel or soldiers
in a combat situation [5].

Tomographic imaging is a promising means for achieving
the aforementioned goals. Most generally, tomography is the
process of reconstructing an image of some environment by
viewing it through slices or sections. In practice, this usually
means sending some type of energy-carrying signal through
an object or area, and observing attenuation in the signal at
another position. Over many spatially diverse measurements,
an appropriate inverse model may be applied to estimate the
environment. Use of RF waves as the measurement phenom-
enon is attractive due to their potential to propagate over wide
areas and penetrate a variety of materials. Early efforts in
RF tomographic techniques attempted to locate discontinuities
in the ground, such as coal seams or tunnels [6]–[9].

In the past decade, the proliferation of low cost wireless
sensor networks has stimulated additional research interest in
tomographic area mapping and tracking. The term RTI has
been used to describe the use of RF signals to estimate the
shadowing loss due to static or moving objects [10]. RTI is
posed as a case of device-free localization, as the objects to
be located do not carry transmitters or receivers [11]. In [10],
the authors proposed to image changes in RF attenuation from
a measured baseline using only received signal strength (RSS),
a measurement available to almost any radio receiver. In [12],
measurements of RSS variance were used for tracking only the
moving objects in an environment, emphasizing the through-
wall capabilities of RTI. Methods for addressing regularization
of the inverse problem of image reconstruction were explored
in [13].

Other authors have pursued the tomographic imaging of the
purely static features of an environment. Knowledge of the
static shadowing environment is useful for mapping obsta-
cles, estimating link shadow fading [14], and even inform-
ing localization algorithms [15]. In [16], the author utilized
a pair of robots moving in coordinated patterns to collect
RSS data for a variety of attenuating structures. Compressive
sampling techniques were used to reconstruct images using a
reduced number of measurements. Reference [17] explored
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the relationship between random and coordinated spatial
sampling patterns using the same robotic testbed. In [18],
the authors demonstrated the benefits of sensor fusion for
observable and unobservable features, combining laser and
RF measurements.

While the aforementioned works have focused on narrow-
band RF imaging, UWB pulse radio techniques have also
attracted interest. A UWB radio signal is often defined as
having a bandwidth greater than 20% of the center fre-
quency, or 500 MHz, whichever is greater. We also distinguish
a UWB signal from other wideband signals, such as spread
spectrum, by the impulse nature of UWB. That is, UWB
signals achieve high bandwidth via very short duration pulses
of very low duty cycle. The resulting short spatial extent
of the waveforms results in several advantages, namely high
range resolution, interference resistance, and multipath signal
rejection [19].

These advantages have led to applications in tradi-
tional radar tracking, through-wall imaging, and localization.
In fact, radar based approaches dominate the UWB litera-
ture for imaging objects occluded by walls, e.g. [20]–[23].
For indoor object detection and tracking, a holistic design
of the UWB sensor network is considered in [24], and
selection of representative measurements is addressed in [25].
UWB signals have even been employed for the remote moni-
toring of human breathing [26]. In addition to imaging and
tracking, UWB has shown promise for the precise local-
ization of nodes in sensor networks where GPS is unavail-
able. Accurate time-of-arrival (TOA) information, and even
two-way time-of-flight (TOF) measurements made by UWB
radios can resolve the distances between cooperative nodes,
to which a localization algorithm may be applied [27]–[30].

B. Contributions

In this paper, we address the RTI problem for imaging
the static features and obstacles in the environment using
UWB signaling techniques in a realistically deployable mobile
network. Our approach has several advantages, and seeks
to address some problems with practical implementation of
RTI systems. The first problem is mitigation of multipath
signal effects which are detrimental to tomographic models
which consider only the line-of-sight (LOS) signal path.
As the authors of [31] showed, small scale multipath effects
can easily exceed the shadowing effects we are interested
in, showing up as additional noise in the measurements.
We address this issue by using the large signal bandwidth
of UWB to clearly separate the LOS signal path from the
reflected multipath signal energy, by using a direct-path sig-
nal strength (DPSS) metric. Doing so is highly beneficial
for applying a linear tomographic projection model along
the LOS, and employing a straightforward path loss model
even in multipath rich indoor environments. The authors of
[16]–[18] mitigated these multipath effects using high gain
directional antennas, which were kept oriented toward each
other at all times. Our approach can be performed with
basic, omni-directional broadband antennas, thus achieving
the multipath separation capability regardless of the loca-

tions or antenna orientations of the nodes. This is important
for scaling the network beyond a single pair of nodes, where
reorienting antennas across the many links would become
intractable.

Second, we address the calibration issue which is present
in static object imaging for RTI. When imaging static objects,
the shadowing losses of interest must be separated from the
path losses due to link distance, the multipath signal effects,
as well as the systematic effect of each link. Differences in
transmit power, cable lengths, antenna gain, receiver sensitiv-
ity, etc. all introduce an unknown bias for each link in the
network. Some authors, e.g. [32], [33] have addressed this
problem for tracking moving objects, where only changes in
RSS are measured. Others [10], [34] collect baseline data for
static nodes in an “empty” area, then insert the shadowing
objects to be measured. Still others [16]–[18] have only a
single mobile link to characterize. However, as the network
scales beyond even a couple of nodes, individual characteriza-
tion of each link prior to deployment may be infeasible. During
deployment, a given mobile link may not know if or when it is
being shadowed by objects, making simple online calibration
difficult. We propose to jointly estimate both the unknown
spatial shadowing due to objects, as well as the unknown link
bias and system path loss parameters. We do this under the
framework of a linear mixed effects model. The problem is
convex, which leads to efficient numerical solution methods.
To overcome the underdetermined nature of the tomography
problem, we implement a regularization technique known as
the elastic net (EN). This allows the inclusion of the a-priori
constraints of image pixel sparsity, as well as assumed pixel
spatial correlation.

The paper is organized into sections as follows. Section II
describes our use of the UWB signal to isolate direct path
signal energy for measurements, as well as modeling the
signal propagation. In Section III we describe the tomographic
projection model used to map an image on to the space of
measured data. Our mixed-effects image reconstruction model
is detailed in Section IV. We derive performance bounds for
the model and test its performance in Sections V and VI,
respectively. The results of our tomographic experiments are
displayed in Section VII. Finally, we conclude and discuss
future work in Section VIII.

II. UWB SAMPLING, MEASUREMENT, AND PROPAGATION

A. Time Domain Direct Sampling

Since a UWB signal pulse is very short in both temporal
and spatial extent, it will therefore occupy a large band-
width in the frequency domain. However, the total transmitted
signal power may be quite small (< −14.8 dBm in our
testing). This is generally to comply with regulations
governing UWB transmissions; for example the Federal Com-
munications Commission (FCC) requires the power spectrum
to be below −41.3 dBm/MHz. This low limit gives a UWB
transmission near noise-level characteristics when viewed from
the frequency domain, quite unlike narrowband communica-
tion signals. As a result, UWB signals are generally analyzed
directly from samples in the time domain. This of course
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Fig. 1. Top: Idealized transmitted UWB pulse signal. Bottom: Actual time
domain received samples in a high multipath indoor environment at a distance
of 10 meters. Amplitude is the raw ADC/DAC value, assumed proportional
to voltage.

requires relatively high sampling rates in order to satisfy
the Nyquist criterion. For example, the P410 UWB radio
from Time Domain1 used in our experiments has an effective
sampling period of 61 ps.

Fig. 1 shows an example idealized pulse transmitted from
the UWB radio. The pulse is designed as a bandpass signal
with center frequency 4.3 GHz and bandwidth 2.2 GHz, with
power level conforming to FCC requirements. The transmitted
signal is sampled by another UWB transceiver and the received
pulse is shown in the bottom plot of Fig. 1. Both transmitter
and receiver are operating in a high multipath indoor environ-
ment. The many surfaces in a multipath environment produce
signal reflections that arrive at the receiver at different times.
In fact, a majority of the received signal’s energy is due to
multipath propagation. However, the shortest path along the
LOS between transmitter and receiver arrives first, and is
clearly separated from the reflected energy by direct sampling
in the time domain. This is the motivation for our definition
and use of direct-path signal strength, described below.

B. Direct-Path Signal Strength

The ability to separate the LOS and multipath signal energy
is crucial, since a linear tomographic projection only models
shadowing loss along the LOS. If not rejected, the multipath
energy creates a rapidly fading channel, and the RSS variance

1Time Domain Corporation, Huntsville, AL. Available at: http://www.
timedomain.com.

can become extremely large, as noted in [31]. The result is
unacceptably noisy measurements for tomographically esti-
mating the large-scale shadowing loss due to objects along
the LOS. To measure the LOS-only signal strength, we make
use of the DPSS metric. Originally defined in [35], the DPSS
was empirically determined to provide the best measure of
signal strength along the LOS path. The metric is defined by

Y = max
∀l

|x[l]w[l − τ ]|, (1)

where x[l] is the sampled signal and w[l − τ ] is a unit ampli-
tude rectangular window of the same duration as the trans-
mitted pulse. The offset τ is the sample index of the detected
leading edge of the signal. In practice, to reduce the variance of
the DPSS and improve SNR, multiple pulses are accumulated
and averaged to obtain a single measurement, which we will
still denote simply as Y . This is the measure of signal strength
used throughout the paper. Note that while the RTI literature
generally uses power as the signal strength metric, Y is a
measure of amplitude, being an average of many pulse peaks
as measured by the ADC in Fig. 1. Rather than square this
value to obtain units of power, we will simply express Y in
the dB scale in the next section.

C. Log-Distance Path Loss Model

The UWB multipath propagation channel has been studied
in theory and empirically, e.g. [36], [37]. In this paper,
we express the DPSS as a function of distance and shadowing
using a simplified log-distance path loss model. The model is
expressed with additive terms in the log domain as

y = b + s − αd + ε, (2)

where DPSS value y = 20 log10 Y is now measured in dB.
b ∈ R is a bias or “gain” term aggregating the effects of
transmitter power, receiver sensitivity, antenna gains, cable
losses, etc. s ∈ (−∞, 0] is the shadowing component of
primary interest in this work; s models the signal strength
loss in the observed variable y due to objects blocking the
LOS. α > 0 is a path loss exponent controlling the rate
of signal decay due to distance, with d equal to the log-
distance between transmitter and receiver. The additive error
term ε ∈ R represents measurement error and any other
unmodeled effects.

To characterize b and α in (2) for a single transmitter/
receiver pair, we have performed a LOS path loss experiment
in a multipath rich laboratory environment over the distances
of interest. The results are plotted in Fig. 2. The results show
a strong fit to the measured data, indicating that (2) is a
reasonable model for DPSS path loss in indoor environments.
The large dB values shown in Fig. 2 are relative to 1 amplitude
unit, since proportionality constants for units of energy/voltage
are not known. For example, the P410 ADC outputs DPSS
values in the typical range of 5000 to 60000 amplitude units.

In order to produce a tomographic image of the shadowing
caused by objects in the environment, many DPSS measure-
ments must be taken at spatially diverse locations in that
environment. This is facilitated by mobile sensor networks
which may contain many links; M mobile nodes grants up
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Fig. 2. Measured DPSS for a single LOS (s = 0) link in an indoor
environment. The least squares values for the path loss parameters are
b̂ = 104.1, α̂ = 0.941, with r2 = 0.99. 1000 DPSS measurements were
averaged for each data point.

to N = M2 − M unique transmit/receive pairs. We index (2)
to encompass the full network by using i to index the unique
links, and j to index the individual measurements made by a
given link:

yi j = bi + si j − αdi j + εi j . (3)

Thus, yi j is the j th DPSS measurement made by the i th link
in the network. The index set is defined by i ∈ {1...N},
where N = M2 − M . The links are formed by the M
nodes in the network, and each link makes ni measurements.
The gain term is now also indexed by i , since transmit power,
receiver sensitivity, and other systematic effects mentioned
above are different for each transmit/receive pair, and may vary
substantially. The LOS shadowing si j and link log-distance
di j may change with each measurement as the nodes move,
and are indexed accordingly. The unknown path loss exponent
α is assumed to be an environmental variable shared by all
links and thus carries no index. Note that for a spherical
wave propagating in free space α = 1 for signal strength
measurements, though in practice will vary due to antenna
properties and the environment.

Clearly, the link index i creates a large number of bias
parameters {bi ,α}. Thus, single-link characterizations such as
those shown in Fig. 2 may not generalize well across the
entire network, leading to poor or misleading results, even with
homogeneous hardware. Our mixed effects estimation proce-
dure, derived in the following sections, seeks to characterize
these parameters, along with the unknown spatial shadowing.

III. TOMOGRAPHIC PROJECTION MODEL

From the path loss model in (3), the DPSS measurements
yi j contain information about the shadowing loss along the
LOS for that measurement. This information, when aggre-
gated, should describe the static shadowing losses in the

Fig. 3. Graphical depiction of relative pixel weighting and indexing for an
arbitrary link i taking a measurement j in a 10 × 10 pixel image. Shaded
pixels have xi jk > 0 according to (6); unshaded pixels have xi jk = 0. Note
the single index k is used to designate the K pixels by column stacking,
typical in image processing contexts.

environment as a function of space. This rate of attenu-
ation with respect to spatial extent has been termed the
spatial loss field (SLF) [14], [38], and its estimation is our
primary goal. Allowing the spatial variable z to represent
position, the total shadowing loss si j between two points is
described as the line integral of the continuous SLF θ(z) over
the straight line connecting the two points,

si j
(
θ(z), Li j

)
=

∫

Li j

θ (z) dz, (4)

where Li j is the straight line path connecting the transmitter
and receiver of link i when taking measurement j . From (4) it
can be seen that the SLF has units of dB per meter if measuring
distance in meters. Also, given the sign conventions used in
Section II-C, θ(z) ∈ (−∞, 0 ] will be negative in regions
containing attenuating objects, and zero in free space regions.

In seeking a tractable method of estimating the entire
SLF from measurements, we approximate the integral with
a summation, and replace the continuous SLF θ(z) with a
vector θ having a discrete set of K pixel values. This yields

si j =
K∑

k=1

xi jkθk = xT
i j θ . (5)

Now, the shadowing loss is the sum over all SLF pixels θk
in the area to be imaged, multiplied by a corresponding set
of pixel weights xi jk . These weights represent each pixel’s
contribution to the total shadowing loss. Note that though the
SLF is interpreted as a two-dimensional map, in (5) the SLF
is expressed as a K × 1 vector by column stacking, consistent
with the image processing literature.

In assigning weights xi jk , we choose the straight line
approach, depicted in Fig. 3. In this weighting only pixels
along the direct LOS between transmitter and receiver receive
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nonzero weight. This is due to the fact that the DPSS measure-
ment effectively eliminates the multipath signal components,
such that only objects within pixels along the LOS should
materially affect the shadowing loss. The notation θk ∈ Li j
will indicate that the straight line segment from transmitter
to receiver passes through pixel θk . The weighting values are
then assigned by

xi jk =
{

Dk : θk ∈ Li j

0 : else,
(6)

where Dk is the length of the line segment passing through
pixel θk . This weighting scheme is similar to those used in
X-ray based computed tomography (CT) scanning, as also
noted in [34]. Weighting each pixel by line segment length also
preserves the expected units of measurement for the model;
xi jk has units of meters, θk has units of dB per meter, yielding
the shadowing loss in pure dB of attenuation.

The aforementioned straight line weight model makes phys-
ical sense for the DPSS metric, since the LOS path is iso-
lated. However different propagation models have also been
considered in the RTI literature. In [10] and [12], an evenly
weighted ellipse with transmitter and receiver as foci was used.
The weight factor was inversely proportional to the square root
of the link distance, which represents the lower RSS variance
for longer links. In [34], several models were studied from
experimental data, including both elliptical and straight line
weighting areas.

We also expect that shadowing losses will be spatially
correlated in practice. Therefore we will define the between-
pixel spatial covariance matrix

E
[
θθT

]
− E[θ ] E[θ ]T = Cθ ∈ RK×K . (7)

To determine the elements of Cθ , we assume that the between-
pixel covariance decays exponentially with distance,

E [θkθl] − E [θk] E [θl] = σ 2
θ e− Dkl

κ , (8)

where Dkl is the distance between the centers of pixels θk
and θl , and κ is a spread parameter with units of meters.
This exponential decay parametrization is similar to that used
in the network shadowing model of [14] to model randomly
placed objects, and was used in the experimental work of [34]
as a-priori image information. We use the empirically deter-
mined value of κ = 0.21 m from [14] in our work. We also set
the prior pixel variance σ 2

θ = 1, as the overall scaling effect
will be managed by selection of regularization parameter λ2
in Section IV-B.

Note that other characterizations of pixel correlation besides
that in (8) are possible. In our work in [39] for example,
we explored using a-priori knowledge of image structure
expressed as covariance to enhance image reconstruction.
However, we have not done so in this work in order to
minimize assumptions.

IV. MIXED EFFECTS IMAGE RECONSTRUCTION

This section describes our full forward model mapping
the unknown SLF onto the known DPSS measurements.

The inverse problem of retrieving an estimate of the SLF
image is ill-conditioned, and thus requires regularization to
obtain a useful result. We explain our approach to regulariza-
tion using a modified form of the EN cost function, and its
solution using convex optimization.

A. Forward Model
By combining (3) and (5), we obtain an expression for

the K unknown SLF parameters as a function of the observed
DPSS measurements:

yi j = xT
i j θ + bi − αdi j + εi j . (9)

As given in Section II, each link in the network makes ni
measurements. To simplify the notation we will assume that
each link makes the same number of measurements, so that
ni = n.2 Aggregating the n measurements made by link i
yields the expression

yi =




xT

i1
...

xT
in



 θ + bi




1
...
1



 + α




−di1

...
−din



 +




εi1
...

εin





= Xiθ + bi 1n + αdi + εi

=
[ −di Xi

] [
α
θ

]
+ bi 1n + εi

= Hiθ
(α) + bi 1n + εi . (10)

Here we have defined the design matrix Xi ∈ Rn×K as
the stacked, transposed pixel weight vectors defined for each
individual measurement in (5). Defining 1n to be an n × 1
vector of ones, the vector bi 1n replicates the nuisance para-
meter representing the bias of link i for each measurement.
The vector αdi ∈ Rn maps the contribution of the unknown
path loss exponent onto the DPSS measurements via the
known log distances. Finally, the collected errors form the
vector εi ∈ Rn . For compactness, we combine the unknowns
not dependent on link index i into a single vector θ (α) ∈ RK+1

with corresponding known model matrix Hi ∈ Rn× (K+1).
From (10), we can see that the measurements for each

link yi are a function of the common SLF/path loss exponent
parameter θ (α), which is of primary interest and does not vary
with each link i . However, DPSS is also a linear function of the
link biases {bi }, which are unique to each link and unknown.
From here on we will model bi as a Gaussian random variable
with unknown mean and variance; so that bi ∼ N (µb, σ 2

b ).
The εi is modeled as a zero-mean independent Gaussian ran-
dom vector; εi ∼ N (0, σ 2

ε In). Thus within link i , we explicitly
separate the link bias bi from independent noise vector εi .
We also assume that the {bi , εi } are mutually independent,
and independent across i .

Under these assumptions, (10) has the general form of a
linear mixed effects model, a special class of linear models used
in the statistical literature. Such models are used to express the
hierarchical effects of clustered data which might be arranged
into “bins”. That is, they account for measurement effects at
different levels: global effects which are of primary interest,
and subject or group specific effects which are not of primary

2It is straightforward to generalize these results such that each link makes
a variable number of measurements.
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interest but nevertheless must be accounted for [40] and [41].
Thus, they are a natural fit for modeling the unknown bias
and path loss present in a network making signal strength
measurements. The term mixed effects is used because we
model the global parameters θ (α) as fixed but unknown “fixed
effects”, while the link specific effects {bi , εi } are modeled
as random variables, or “random effects” (REs). While we
will not specifically use the Gaussian assumption of the {bi}
for image reconstruction, doing so facilitates closed form
derivation of the Cramér Rao lower bound (CRLB), and is
in general agreement with our empirical results.

To obtain a single linear model from the N sets of
equations, (10) is stacked for each value of i by

y =




y1
...

yN



 =




H1
...

HN



 θ (α)

+





1n 0 · · · 0

0 1n
...

...
. . . 0

0 · · · 0 1n








b1
...

bN



 +




ε1
...

εN





= Hθ (α) + Zb + ε. (11)

Here the full data vector is y ∈ RNT , where NT = Nn is
the full data size. The full model matrices have dimensions
H ∈ RNT × (K+1) and Z ∈ RNT ×N . The unknown SLF vector
θ (α) ∈ R(K+1) is unchanged, and b ∈ RN is the full unknown
mixed effects vector. The modeling errors/measurement noise
is captured by vector ε ∈ RNT . Thus (11) relates all para-
meters, known and unknown, to the collected data y across
all links in the network, and serves as our full forward
measurement model.

B. EN Regularization

Inverse problems in the literature on mixed effects are gen-
erally solved using a maximum likelihood approach in which
the data covariance and unknown fixed effects are estimated
simultaneously [40]. However, (11), like most imaging inverse
problems, represents an underdetermined system of equations.
That is, the measurement data are insufficient to fully describe
the parameter θ (α), yielding an infinite number of candidate
solutions which fit the data y. Model matrix H has low
rank, which is due to a combination of limited measurements,
each measurement describing only a small part of θ (α), and
disparities in areas of the image crossed by few or no links.
A full rank model matrix H is normally assumed in the
mixed effects literature; thus the usual parametric solution of
mixed models, e.g., maximum likelihood, will not yield useful
images.

As a result, prior information must be introduced into
the model to select a unique solution among the infinite
number available, a process known as regularization. This
usually involves minimizing some cost function of the data
and unknown parameters, selecting the “best” value for θ (α)

which minimizes the cost function. Regularization is thus

a nonparametric approach to solving (11). Several popular
methods exist, such as Tikhonov (2-norm), lasso (1-norm),
truncated singular value decomposition, and total variation
approaches [42]. Each method has its own tradeoffs; in [10],
Tikhonov regularization was preferred for computational speed
and having a closed form solution. In [16]–[18], total variation
minimization was preferred to enforce piecewise constant
shadowing regions.

In our approach, we use the EN. Originally proposed in [43],
the EN loss function is a linear combination of Tikhonov and
lasso type penalties, given by

L (λ1,λ2, θ) = ‖y − Xθ‖2
2 + λ2 ‖$θ‖2

2 + λ1 ‖θ‖1 (12)

for the basic linear model y = Xθ + ε. The 2-norm penalty
‖$θ‖2

2 is taken from Tikhonov regularization, also known as
ridge regression, and penalizes the energy in $θ , for some
specified linear operator $. The 1-norm penalty ‖θ‖1 comes
from the lasso regression, and enforces a sparse solution.
Parameters {λ2,λ1} > 0 control the penalty term’s smoothing
effect on the solution.

Several unique properties of the EN are noted in [43]
which are appropriate for the assumptions in our problem.
First, the 1-norm penalty enforces a sparse solution, with
many elements of θ forced to zero. This is appropriate as
we assume that much of the area to be imaged consists of
empty space, which has shadowing loss equal to zero. 2-norm-
only regularization methods will in general have all θk (= 0.
Second, the addition of the 2-norm penalty from Tikhonov
regularization overcomes what is known as a grouping effect
of the lasso. If a subset of parameters θ c ⊂ θ are highly
correlated, then the lasso will tend to select only one of them
at random. This grouping effect is undesirable for our model;
in Section III we assume shadowing losses to be correlated
among neighboring pixels in the image.

To model this expected behavior, we define the a-priori
pixel covariance according to (7) and (8). Use of a prior covari-
ance matrix is of course probabilistic and suggests a Bayesian
interpretation of the data. However, (12) is a deterministic cost
function of the unknowns. It has been observed, e.g., [44], that
the 2-norm Tikhonov penalty can be related to the Bayesian
covariance via

‖(θ‖2
2 = θT (T (θ = θT C−1

θ θ , (13)

so that ( can be derived from C−1
θ via the Cholesky decom-

position. In this way the assumed pixel covariance may be
incorporated into the 2-norm regularization term in (12).

Finally, we extend the EN cost function of (12) by incor-
porating our additional mixed effects model terms:

L̃ (λ1,λ2, θ ,α, b)

=
∥∥∥y − Hθ (α) − Zb

∥∥∥
2

2
+ λ2 ‖$θ‖2

2 + λ1 ‖θ‖1 . (14)

Here the squared-error term seeks to obtain agreement between
the solution and the data, where we now allow the individual
link bias terms b to be model variables to be estimated.
The linear operator ( allows us to enforce the per-pixel spatial
correlations desired above. Note that the penalty terms apply to
vector θ only, that is, regularization is not applied to variable α.
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Given the regularization parameters, the minimization problem
with all constraints is

{
θ̂ , α̂, b̂

}
= arg min

θ≤0 ,α>0
L̃ (θ ,α, b | λ1,λ2). (15)

The constraint θ ≤ 0 indicates that all elements of the solution
vector are less than or equal to zero, consistent with the
definition. While there is no known closed-form solution to
the EN, both it and our extension in (14) represent convex
cost functions. Thus, efficient methods exist for finding numer-
ical solutions, and flexible software packages are available.
For our simulation and experimental results, we have
employed the CVX package for MATLAB, which allows
specifying and solving various convex problems [45].

This leaves the problem of determining the parameters
{λ2,λ1} which adjust the regularization weighting to apply.
Higher values will generally result in smoother images, with
fewer pixels selected as nonzero. While multiple methods exist
to determine regularization parameters, we use the two step
method suggested in [43]. In the first step, the usual Tikhonov
regularization is performed, that is, with λ1 = 0 for a range of
values of λ2. For each λ2, we plot the observed “norm error”
‖$θ̂(λ2) ‖2

2 as a function of the corresponding “data error”

‖y − Hθ̂
(α)

(λ2) − Zb̂ (λ2) ‖2
2. For a wide range of λ2 values,

this curve will take an “L” shape, and hence this procedure is
referred to as the L-curve method. The λ2 value corresponding
to the inflection point at which the sum of the two error terms
is minimized is the value used. This heuristic is justified by
its general robustness and intuition as a compromise between
the two solution norms.

For λ1, leave-one-out cross validation is used. A single data
point is omitted from each link’s measurements, forming a
“training” data set and associated model matrices {yt , Ht , Zt }.
The left out data forms a smaller “verification” data and model
matrix set, {yv , Hv , Zv }. A suitable range of values for λ1 are
chosen to test, denoted {λ1,q}, q = 1...Q. Then a solution

pair θ̂
(α)
q , b̂q is computed for each λ1,q using the training

set. For each candidate solution, we calculate the prediction
error ‖yv −Hv θ̂

(α)
q −Zv b̂q‖2

2 using the verification set. Finally,
we choose the λ1,q corresponding to the θ̂q , b̂q that gave the
lowest prediction error. With both {λ1,λ2} now selected, a full
solution can be computed using the entire data set via (15).

V. BAYESIAN CRLB DERIVATION

It is very useful to obtain performance bounds for a given
model and solution method to benchmark performance in
the general case. The CRLB is very well known in sta-
tistics as a lower bound on the variance of unbiased esti-
mators. The CRLB proves that the variance of individual
parameter estimates are lower bounded by corresponding
elements of the inverse Fisher information matrix. However,
our estimator in (15) is clearly biased by the introduc-
tion of the regularization terms. In such cases the CRLB
has been extended to include biased estimators in what is
known as the Bayesian CRLB, or Van Trees inequality [46].
The covariance of biased estimators is bounded by the
inclusion of a prior distribution on the unknowns, just as

in Bayesian estimation. This leads to the derivation of a
Fisher information matrix for both the data likelihood and
the prior. The Bayesian CRLB states that the estimation
error covariance matrix E = E[(θ̂ (α) − θ (α))(θ̂

(α) − θ (α))T ]
is lower bounded by

E ! (FL + FP)−1 = F−1, (16)

where FL , FP are the Fisher information matrices for the data
log likelihood and prior distributions, respectively. The “!”
relation indicates that the difference matrix E−F−1 is positive
semidefinite. An important consequence of this fact is that the
diagonal elements of E represent lower bounds on the variance
of estimating individual pixel values; that is,

Eqq = E[(θ̂ (α) − θ (α))2
q ] ! F−1

qq . (17)

Though other formulae exist, the Fisher information expres-
sions for general data log likelihood and prior distributions
can be expressed as

FL = Ey|θ
[
(∇θL (y|θ)) (∇θL (y|θ))T

]
(18)

FP = Eθ

[
(∇θL (θ)) (∇θL (θ))T

]
, (19)

where L (·) indicates the log PDF of the enclosed random
vector. ∇ represents the gradient operator taken with respect
to the unknown parameter as shown. We will now derive the
necessary expressions to compute a Bayesian CRLB for our
mixed effects model in (10), and use it to benchmark simulated
performance. From (10), the data have Gaussian distribution
yi ∼ N (µyi

, Cyi ), where

µyi
= Hiθ

(α) + µb1n (20)

Cyi = σ 2
b 1n1T

n + σ 2
ε In. (21)

The data log likelihood is then given by (up to constant terms
not dependent on θ (α)):

L
(

yi |θ (α)
)

= −1
2

(
yi − µyi

)T C−1
yi

(
yi − µyi

)
. (22)

Using straightforward rules for the gradient operator over
vectors, it can be easily shown that

∇θ (α)L
(

yi |θ (α)
)

= HT
i C−1

yi

(
yi − µyi

) = Ki , (23)

which when inserted into the definition of Fisher information
gives

FLi = Eyi |θ (α)

[
Ki KT

i

]
= HT

i C−1
yi

Hi (24)

as the Fisher information for a single link in the network.
Since we have assumed that the random variables {bi , εi } are
independent across links, the data {yi} represent independent
observations of θ (α). The additivity property of Fisher infor-
mation for independent observations gives

FL =
N∑

i=1

FLi =
N∑

i=1

HT
i C−1

yi
Hi

=
N∑

i=1

HT
i

(
σ 2

b 1n1T
n + σ 2

ε In

)−1
Hi (25)
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as the expression for the Fisher information matrix of data
collected from our uncalibrated network across all links.
If the network were “perfectly calibrated” such that all bias
parameters were known and removed, (25) reduces to

FLC = 1
σ 2

ε
XT X, (26)

where X indicates the stacked matrices Xi , and the
subscript C indicates a calibrated or bias free network. This
is the same matrix derived in [10] for their imaging problem,
in which the stationary system took baseline readings in empty
space before adding the objects under test.

For the prior distribution on the image and path loss parame-
ters, we will assume that θ (α) is also Gaussian distributed with
mean µθ (α) and covariance Cθ (α) . The covariance structure is
defined by (8), with α assumed uncorrelated with the image
pixels. By very similar derivation it can be shown that

FP = C−1
θ (α) , (27)

which defines all necessary parameters to compute the bound
in (17). Note that while (17) gives a variance bound for each
pixel, we will generally average over all pixels to compute an
average bound for the entire image.

VI. PERFORMANCE SIMULATIONS

In this section we analyze the performance of our proposed
convex EN solution approach with respect to the theoretical
bounds derived in Section V. We attempt to choose parameter
values which are realistic and also representative of the con-
ditions seen in our experimental results of Section VII. In our
simulations, we assume a 32 × 32 pixel image representing a
4.8m × 4.8m area. The network of UWB nodes is mobile and
each node moves independently through a larger 16 × 16 m
area encompassing the image in a random-trajectory fashion.
Our network is assumed to have a bias standard deviation
σb = 3 dB and measurement noise standard deviation
σε = 3 dB. Test images are generated according to a Gaussian
distribution with a mean SLF value of 3 dB/m and pixel covari-
ance defined by (8). We choose this prior image distribution
for a fair comparison with standard Tikhonov regularization,
which would be optimal for the Gaussian case if the network
were perfectly calibrated. The simulated path loss exponent α
is also Gaussian with mean 1 and standard deviation 0.1.

We measure the root-mean-squared error (RMSE) perfor-
mance of both our proposed solution in (15), and our proposed
solution ignoring the random effects and path loss, {bi ,α}, and
instead using only their mean values. These are assumed to
be known from a measurement experiment such as that given
in Fig. 2. For comparison, we also simulate the performance
of the standard Tikhonov regularization used in e.g. [10], also
ignoring random effects. The Bayesian CRLBs are also com-
puted, where we use both our mixed effects Fisher information
from (25) and the “calibrated” Fisher information in (26) as
separate cases. Results are displayed in Fig. 4. In the first
simulation we examine the average RMSE as a function of
node count, assuming each node takes n = 30 measurements
as it moves through the area. The results are shown in the
top plot of Fig. 4. We note the superior performance of our

Fig. 4. Comprehensive performance simulation results, varying node
count M (top) and data per link n (bottom). 25 images were simulated and
estimated per data point.

method when random effects are considered and estimated
across all values of M with respect to the Bayesian CRLBs.
In fact our method virtually achieves the lower bound for
large M . Also of interest is that the mixed model lower bound
is only trivially larger than the calibrated model lower bound.
These results suggest that the influence of the random effects
and path loss {bi ,α} can be mitigated, since the bound is
taken with respect to estimating fixed unknown parameter θ (α).
The difference between the two bounds would increase, how-
ever, if the bias variance σ 2

b increased with respect to the noise
variance σ 2

ε .
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TABLE I

TOMOGRAPHIC MAPPING CAMPAIGN SUMMARY

For our second simulation we assume a network
of M = 10 nodes and instead vary the data collected for each
link i . The results are shown in the bottom plot of Fig. 4.
We again observe improving performance as more data
becomes available to each link in the network. The lower
bound on performance does not decrease as rapidly, though the
total data size NT is growing only linearly with n in this case.
In both simulations, we see a clear performance degradation
when the random effects are ignored. In fact, since Tikhonov
Regularization can be shown to be an MMSE estimator for
Gaussian distributed data with Gaussian prior, other methods
of reconstruction are not likely to improve upon the indicated
results without considering the random effects.

VII. EXPERIMENTAL RESULTS

In this section we validate our forward model and image
reconstruction techniques using real experimental data from a
variety of test setups containing attenuating objects. The exper-
iments were performed using our Cognitive Spectrum Oper-
ations Testbed (CSOT). Originally introduced as RadioBOT
in [47], CSOT is designed for performing spatially-oriented
cognitive radio research in mobile networks. The system con-
sists of eight mobile radio nodes, each with its own host com-
puter, motorized base, radio hardware, and 4ft antenna mast.
A primary difficulty in RTI research has been collection of
quality real data. These tomographic experiments have resulted
in collection of high fidelity data sets to address this issue.

The installed hardware of interest in this work is the
aforementioned P410 UWB radio from Time Domain.
The radio transmits and samples UWB pulses as described
in Section II-Afor each pairwise link in the network. Note
that each CSOT node has 2 duplex UWB antenna ports,
and both are used. This results in a system with 224 useful
links from only 8 mobile nodes. The transmitted power and
bandwidth are compliant with FCC regulations for a UWB
system for general use. Received signal scans are converted
to DPSS measurements as in Section II-B, and the esimated
SLF is computed via the methods of Section IV. Common and
individual experimental parameters are summarized in Table I.

To establish the correct pixel weighting described in
Section III, accurate position information must be available
to the nodes at each time step. All position data for our
experiments are also provided by the UWB radios by our
cooperative localization algorithms described in [29] and [30]
Our localization algorithm uses precision ranging between
nodes via time-of-flight measurements, another common appli-
cation of UWB systems. The localization error is < 2 cm
in LOS conditions. Thus, the same measured waveforms and
hardware are used for both localization and tomographic
mapping. We emphasize this natural SLAM characterization;
a mobile network already utilizing UWB hardware for local-
ization purposes could also perform our tomographic mapping
in parallel. The UWB’s low power and wide bandwidth make
harmful interference very unlikely, enabling compatibility with
other RF communications hardware.

We also note that it is difficult to accurately establish the
true SLF in an experimental setting, and thus to compute
the RMSE of the estimated images. Still, it is beneficial to
quantify the estimated SLF image quality in some sense.
We compute two different metrics for this purpose. First
is the well known structural similarity (SSIM) metric [48],
which compares a processed or degraded image to a reference.
The SSIM attempts to measure how well structure is preserved,
an important property of subjectively high quality images.
Higher values of SSIM are better, with the maximum value
of 1 occurring only when both images are identical. The ref-
erence images we use here are binary, equal to one where a
pixel is occupied by an attenuating object, and zero elsewhere.
To compare with the reference, the estimated SLF images are
scaled to the range [0, 1], ignoring the negative sign.

For the second metric, we use the same reference image
and scaled SLF to compute a simple pixel occupancy index.
This is intended to measure how spatially accurate the image
reconstruction is at detecting the objects in the experiments.
The scaled SLF is threshold-ed to create a binary estimate;
pixels less than 0.25 are treated as zero, and pixels greater
than 0.25 are set to one. The pixel occupancy index is then
defined to be the percentage of total pixels where the reference
image and binary SLF estimate are equal. Thus, the index
falls in the range [0, 1]; higher values being better. Both the
SSIM and pixel occupancy indices are provided in Table I.
The following subsections detail the particulars of the three
experiments performed.

A. Experiment I: Hallway, Single Object

Our first experiment was performed in a laboratory building
hallway, with the image encompassing an area approximately
3×6 m in size. The confined space, with large metal doors and
close walls is intended to create a multipath rich environment
for the system to overcome. A single 1.22 m wall section
in the center is the target to be imaged; broadband RF
absorbing foam was used to create opacity to the UWB signals.
The test utilized 3 stationary and 5 mobile nodes. The experi-
ment setup, binary reference image, and reconstructed images
are displayed in Fig. 5. We note that the position of the wall
is well-contrasted with the free space background, which is
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Fig. 5. Experiment I setup and results. Left: Hallway test setup, showing the attenuating object and CSOT nodes. Middle: overhead schematic view/binary
reference image of the test area. Data sampling locations for each node are indicated by colored dots. Right: SLF image reconstruction from DPSS measurements.

Fig. 6. Experiment II setup and results. Left: Conference room test setup, showing the attenuating objects and CSOT nodes. Middle: overhead schematic
view/binary reference image of the test area, with colored dots showing data sampling locations. Right: SLF image reconstruction from DPSS measurements.

correctly estimated to have an attenuation of 0 dB. As a result,
the SSIM and pixel occupancy index given in Table I are the
highest of the campaign.

To estimate the attenuation of the wall from the SLF image,
we take a straight line, perpendicular path through the wall at
its brightest point. Doing so gives an estimated total attenua-
tion of 8.1 dB, an approximation of the laboratory measured
attenuation of 14.5 dB. Note that in general, shadowing loss
values obtained from the tomographic image will tend to
underestimate the true value, since the regularization applied
tends to bias the solution toward zero.

B. Experiment II: Large Room, Two Objects

Our second experiment seeks to differentiate and estimate
the attenuation of two 1.22 m objects separated by a gap
of 1.58 m. The experiment was performed in a large confer-
ence room with a larger test area of 7 × 9 m. The same type
of attenuating foam was used for the walls, and the test again
used 3 stationary and 5 mobile nodes. The results are shown in
Fig. 6. The objects are well differentiated, though we do note
some over-smoothing with our systematic regularization para-
meter search. This lowers the SSIM vs. Experiment I, though
the occupancy index is still quite high. In this case, the wall
sections have an estimated attenuation of 4.15 dB (left)
and 7.64 dB (right) using the same perpendicular paths as
Experiment I.

C. Experiment III: Through-Wall Imaging

The final experiment seeks to demonstrate our proposed
techniques for a through-wall image, an application of
RTI which has been frequently proposed in the literature.
That is, we wish to estimate not only the location and

attenuation of visible features, but also those which might be
obstructed behind walls. To do this, a 2.44 × 2.44 m artificial
building was constructed from standard drywall material,
shown in Fig. 7. Since the drywall is highly transparent to
the UWB signal, very thin RF absorbing foam was added to
the inside surface to simulate a much thicker material. Another
wall section was placed in the center, and data was collected as
shown by surveying around the perimeter using 4 mobile and
4 stationary nodes. As shown, the image reconstruction is able
to resolve the empty space inside the structure and partially
separate the interior object. Estimates of the outer wall atten-
uation average 3.72 dB, measured diagonally through each
corner. Laboratory measurements of the outer wall attenuation
yielded 6.3 dB. The greater difficulty in reconstructing this
image is also evident in the lower SSIM and occupancy
indices, which is consistent with the subjectively lower image
quality.

The through-wall imaging performance could be improved
in several ways. One could depart from our systematic
approach to finding {λ1,λ2} and manually tune these parame-
ters, as well as place additional constraints on bias vector b and
path loss α. As suggested in Section IV-B and [39], the wall
sections could be better estimated by altering the spatial shape
of the prior image covariance. We leave this increased scope
as a topic for future research.

D. Penalty for Ignoring Random Effects

The simulation results from Section VI suggest that
ignoring link bias and path loss parameters (i.e., using
assumed or empirical values) carries a performance penalty
regardless of the method used to estimate the image.
To get a sense of the influence these parameters may have in
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Fig. 7. Experiment III setup and results. Left: Artificial building test setup, with cutaway showing the interior object. Middle: overhead schematic view/binary
reference image of the test area, with colored dots showing data sampling locations. Right: SLF image reconstruction from DPSS measurements.

Fig. 8. Histogram plot showing distribution of values of the estimated {b̂i }
across all experiments. The sample mean µ̂b = 99.60 dB and sample standard
deviation σ̂b = 2.59 dB.

Fig. 9. Tikhonov regularization solution for Experiment II when ignoring
the random effects. b̂i = b̂ = 104.1 dB, α̂ = 0.941 from Fig. 2. The L-curve
method was used to determine λ2 = 1.003, and constraint θ̂ ≤ 0 is applied.

practice, we plot the histogram of the estimated {b̂i } in Fig. 8.
The empirical distribution of values gives confidence to our
original assumption that this parameter carries a Gaussian

distribution; in this case the sample mean is µ̂b = 99.60 dB
and sample standard deviation is σ̂b = 2.59 dB.

To visualize the effect of ignoring these parameters, we esti-
mate the standard Tikhonov regularization solution on the data
for Experiment II, assuming that all links carry the same bias
b̂i = b̂ = 104.1 dB and path loss exponent α = 0.941
obtained empirically from Fig. 2. The result is shown in Fig. 9.
The degradation in performance is evident in comparison with
our method, particularly the streaking between positions of
the stationary nodes. This example illustrates the important
observation made in Section II-C that results for a single pair
of nodes may not generalize well to an entire network, despite
the estimated parameters strongly fitting the data. This is true
even if all nodes share the same hardware, antennas, and power
levels, as in our experiments.

VIII. CONCLUSION

In this work we have presented a novel mixed-effects
modeling technique for aggregating UWB signal strength
measurements in an uncalibrated, mobile network, for the
purposes of performing static radio tomographic imaging.
We have proposed to use the DPSS metric from a UWB
signal as a practical means of managing multipath propagation,
in contrast with other approaches. UWB has gained popularity
for use in GPS-denied indoor environments, and our imaging
may be performed in parallel with cooperative localization
of the network. This is very attractive for distributed sensor
networks already using UWB for localization or communica-
tion, since the network may immediately expand to performing
SLAM during localization.

To estimate the unknown SLF image, we have proposed to
use a modified convex form of EN regularization. Our simu-
lation results show very attractive performance relative to the
derived Bayesian CRLB in the presence of the random effects.
In our experimental results we have shown the performance
of our methods to estimate both the positions as well as the
spatial loss field present in the environment using a mobile,
cooperative network.3

3Datasets are available to other researchers for testing new algorithms via
GitHub: https://github.com/bbeck6/CSOT-UWB-Tomography-Data.git.
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Future research could focus on a key observation that
the UWB pulse signal also captures significant channel
information. While the DPSS rejects all energy not prop-
agating along the line of sight, this energy still carries
information about the reflective environment. This channel
information could be used to also characterize the reflec-
tive environment, as in a multistatic radar. The tomographic
image (transmitted signals) and radar image (reflected signals)
could be highly complementary in characterizing the
RF environment.

Our mixed model framework for characterizing biased
network parameters could also be applied to other signal
processing problems where data is collected from multiple
low-cost, uncalibrated sensors. As wireless sensor networks
continue to proliferate in greater numbers, directly estimat-
ing such parameters from the data becomes more attractive.
Results could be applied wherever absolute signal levels are
crucial, or when measurements must be compared among
uncalibrated sensors.
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